TD Logique et démonstrations

Logique

- LCS **Exercice 1** Soit $x_1,\ldots,x_n\in\mathbb{R}$ écrire formellement les assertions suivantes
 - 1. x_1, \ldots, x_n sont tous non nuls.

- 2. x_1, \ldots, x_n sont non tous nuls.
- 113 Exercice 2 \mathbb{Z} \mathbb{A} Compléter par \Leftrightarrow , \Leftarrow , \Rightarrow de sorte que l'assertion soit toujours correcte. Justifier les implications fausses par des contre-exemples, et les implications vraies par un argument.
 - 1. Pour $x, y \in \mathbb{R}$, x = y $x^2 = y^2$
 - 2. Pour $x, y \in \mathbb{R}_+$, x = y $x^2 = y^2$
 - 3. Pour $x, y \in \mathbb{R}_+, x \leq y$ $\sqrt{x} \leq \sqrt{y}$

- 4. Pour $x, y \in \mathbb{R}^*$, x < y $\frac{1}{x} > \frac{1}{y}$
- 5. Pour $x \in \mathbb{R}$, $x^2 < x$ x < 1
- 6. Pour $n, m, k \in \mathbb{N}$, $(n \mid k \text{ et } m \mid k)$
- EMV Exercice 3 Compléter par l'implication ou l'équivalence toujours correcte.
 - 1. $\forall x \in E, P(x) \text{ et } Q(x)$

- $(\forall x \in E, P(x) \text{ et } \forall x \in E, Q(x))$ 3. $\forall x \in E, P(x) \text{ ou } Q(x)$ $(\forall x \in E, P(x) \text{ ou } \forall x \in E, Q(x))$
- 2. $\exists x \in E, P(x) \text{ et } Q(x)$
- $(\exists x \in E, P(x) \text{ et } \exists x \in E, Q(x))$ 4. $\exists x \in E, P(x) \text{ ou } Q(x)$ $(\exists x \in E, P(x) \text{ ou } \exists x \in E, Q(x))$

- 3FQ Exercice 4 \mathbb{Z} \mathbb{A} Soit (u_n) une suite réelle et f une fonction de \mathbb{R} dans \mathbb{R} . Donner le sens et la négation formelle des propriétés.
 - 1. $\exists M > 0, \forall n \in \mathbb{N}, |u_n| \leq M$

- 3. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (f(x) = f(y) \Rightarrow x = y)$
- 2. $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge n_0) \Rightarrow (|u_n| \le \varepsilon)$
- 4. $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, (n \geq m \text{ et } u_n = 0)$

- AGO Exercice 5
 - 1. Soit (u_n) une suite réelle. Donner la définition formelle de
 - a) (u_n) non majorée.

- b) (u_n) minorée.
- 2. Montrer que la somme de deux suites majorées est majorée.
- 3. Montrer que la somme d'une suite non majorée et d'une suite minorée est non majorée.

Démonstrations

- MWJ Exercice 6 \slash Soit (u_n) la suite définie par $u_0=0, u_1=1$ et $\forall n\in\mathbb{N}, u_{n+2}=5u_{n+1}-6u_n$. Montrer que $\forall n\in\mathbb{N}, u_n=3^n-2^n$.
- F6M **Exercice** 7 \nearrow Soit x un réel irrationnel.
 - 1. Montrer que pout tout nombre rationnel r, le réel r + x est aussi un nombre irrationnel.
 - 2. Énoncer un résultat analogue pour rx.
 - 3. Montrer que la somme de deux nombres irrationnels n'est pas toujours irrationnelle.
- XOC **Exercice 8** Soient $a,b,c\in\mathbb{R}$. Montrer que abc=1 si et seulement s'il existe $x,y,z\in\mathbb{R}^*$ tels que $a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}$.
- 8FQ Exercice 9 $\mbox{\off Soit } x \in \mathbb{R}$ tel qu'il existe $(a,b) \in \mathbb{Z}^2, x = a + b\sqrt{2}$. Montrer que ce couple d'entiers (a,b) est unique.
- 5XY **Exercice 10** $\mathcal I$ Montrer que toute fonction $f:[0,1]\to\mathbb R$ s'écrit, de manière unique, comme la somme d'une fonction affine et d'une fonction g vérifiant g(0) = 0 et g(1) = 0.
- **AYY Exercice 11**

 - 1. Soit $a \ge -1$. Montrer que $\forall n \in \mathbb{N}, (1+a)^n \ge 1+na$. 2. Soit $a \in]0,1[$. Montrer que $\forall n \in \mathbb{N}, (1-a)^n \le \frac{1}{1+na}$.

Arithmétique

- F9I Exercice 12 🌶
 - 1. Soit $a \in \mathbb{N}$. Montrer que si $n \mid m$, alors $a^n 1 \mid a^m 1$.

Indication: Penser à une factorisation, de $x^n - 1$.

- 2. Soit $n \ge 1$. Montrer que si $2^n 1$ est un nombre premier, alors n est premier.
- 3VW **Exercise 13** Montrer que pour tout $n \in \mathbb{N}^*$, il existe $(p,q) \in \mathbb{N}^2$ tels que $n = 2^p(2q+1)$.
- 6FT Exercice 14 Montrer que 2023 ne peut pas s'écrire comme la somme de deux carrés d'entiers.

Indication: Travailler modulo 4, ou considérer le reste de la division euclidienne par 4.

Analyse

ET6 Exercice 15 Soit I une partie de \mathbb{R} . On considère les propriétés

$$(P): \forall c \in \mathbb{R}, \forall \varepsilon > 0, \exists x \in I, |x - c| < \varepsilon \quad \text{et} \quad (Q): \forall (a, b) \in \mathbb{R}^2, (a < b) \Rightarrow \exists x \in I, a \le x \le b.$$

Montrer que (P) et (Q) sont équivalentes. Si I vérifie ces propriétés, on dit que I est dense dans \mathbb{R} .

- VP9 Exercice 16 Montrer que la somme de deux suites périodiques est une suite périodique.
- H6K Exercice 17 \bigstar Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle. Montrer l'équivalence entre les deux assertions suivantes, qui caractérisent la croissante exponentielle de la suite.
 - (i) $\exists \lambda > 1, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n \geq \lambda^n$

(ii) $\exists C > 0, \exists \mu > 1, \exists n_0 \in \mathbb{N} \, \forall n \geq n_0, u_n \geq C\mu^n$

- 8WH **Exercice 18** \bigstar Soit (u_n) une suite définie par $u_0=1$ et $\forall n\in\mathbb{N}^*,\ u_n=u_{\lfloor\frac{n}{2}\rfloor}+u_{\lfloor\frac{n}{3}\rfloor}+u_{\lfloor\frac{n}{6}\rfloor}$
 - 1. Montrer que $\forall n \in \mathbb{N}, u_n \geq n+1$.
 - 2. Montrer qu'il existe une constante C telle que $\forall n \in \mathbb{N}, u_n \leq C(n+1)$. **Indication**: L'assertion $u_n \leq C(n+1)$ n'est pas héréditaire, mais d'autres le seraient.
- N9Z **Exercice 19** \bigstar Soit (u_n) une suite réelle strictement positive vérifiant $\forall n \in \mathbb{N}, u_{n+2} = \sqrt{u_{n+1}} + \sqrt{u_n}$. Montrer qu'à partir d'un certain rang, $u_n \geq 1$.

Récurrences

- 5J3 Exercice 20 💋
 - 1. Montrer que pour $x_1, x_2 \ge 1, x_1 + x_2 \le 1 + x_1x_2$.
 - 2. Soit $n \ge 1$ et $x_1, \ldots, x_n \ge 1$. Montrer que $x_1 + \cdots + x_n \le (n-1) + x_1 \ldots x_n$.
- LPG **Exercice 21** On considère la suite de Fibonacci définie par $F_0 = 0$, $F_1 = 1$, $F_2 = 1$ et la relation de récurrence $F_{n+2} = F_{n+1} + F_n$ pour tout $n \ge 0$.
 - 1. Montrer que (F_n) est croissante.
 - 2. Montrer que pour tout entier $n \ge 1$, $F_1 + F_3 + \cdots + F_{2n-1} = F_{2n}$.
 - 3. Montrer que pour tout entier $n \geq 0$, $F_n F_{n+2} = F_{n+1}^2 + (-1)^{n+1}$.
 - 4. \bigstar Montrer que pour tout $n \ge 1$, $F_{2n-1} = F_n^2 + F_{n-1}^2$.
- GJ3 Exercice 22 \bigstar Théorème de Zeckendorf Montrer que tout entier $n \geq 0$ s'écrit, de manière unique, comme la somme de termes de la suite de Fibonacci distincts, d'indices ≥ 2 ($F_2 = 1, F_3 = 2$), et non consécutifs.
- E2N **Exercice 23** \bigstar Soient $a_1, \ldots, a_n \in \mathbb{N}^*$ distincts, et M un ensemble de n-1 entiers strictement positifs, ne contenant pas $s=a_1+\cdots+a_n$. Une sauterelle saute le long de l'axe réel, à partir de l'origine. Elle va faire n sauts vers la droite, de longueurs a_1, \ldots, a_n , dans un ordre quelconque. Montrer que l'on peut choisir l'ordre de sorte qu'elle évite tous les points de M.

Équations fonctionnelles

- S9Z **Exercice 24** Déterminer les fonctions $f: \mathbb{N} \to \mathbb{N}$ telles que $\forall n, m \in \mathbb{N}, f(n+m) = f(n) + f(m)$.
- XCW **Exercice 25** Pour $f: \mathbb{R} \to \mathbb{R}$, on considère l'équation fonctionnelle $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, f(x+y) f(x-y) = xy$ (*)
 - 1. Soit f vérifiant (*). Pour $x \in \mathbb{R}$, exprimer f(x) en fonction de x et de f(0).
 - 2. Quelles sont les fonctions $f : \mathbb{R} \to \mathbb{R}$ vérifiant (*)?

Divers

- 33Z **Exercice 26** Une interversion de quantificateurs On colorie le plan \mathbb{R}^2 avec deux couleurs.
 - 1. Montrer que pour tout x > 0, il existe deux points du plan de la même couleur à distance x l'un de l'autre.
 - 2. Montrer qu'il existe une couleur telle que pour tout x > 0, il existe deux points du plan de cette couleur à distance x l'un de l'autre.
- UFP Exercice 27 \bigstar Pour $A \subset \mathbb{Z}^2$ une partie finie, on note ∂A la frontière de A, c'est-à-dire l'ensemble des points de A dont au moins un voisin (à une distance 1) n'appartient pas à A. Montrer qu'il existe $C \in \mathbb{R}$ tel que $\operatorname{Card}(\partial A) \geq C \sqrt{\operatorname{Card}(A)}$, indépendamment de la partie $A \subset \mathbb{Z}^2$.

 Indication : Considérer H/L le nombre d'ordonnées/d'abscisses distinctes des éléments de A.
- VCD **Exercice 28** \bigstar Un problème de John Conway Soit E un ensemble de points de \mathbb{R}^2 . On note |x-y| la distance euclidienne entre deux points de \mathbb{R}^2 .
 - On dit que E contient des points arbitrairement proches si $\forall \varepsilon > 0, \exists x, y \in E, (x \neq y \text{ et } |x y| \leq \varepsilon).$
 - On dit que E est 1-séparé si $\forall x,y\in E, x\neq y \Rightarrow |x-y|\geq 1$.

Montrer l'équivalence entre les assertions

- (i) «Tout ensemble de points de \mathbb{R}^2 qui intersecte tout rectangle d'aire 1 contient des points arbitrairement proches»
- (ii) «Pour toute partie 1-séparée E, il existe des rectangles d'aires arbitrairement grandes qui n'intersectent pas E».

Graphes

- 5E4 **Exercice 29** La population d'un village se réunit un jour de fête. Prouver que le nombre de personnes ayant serré la main d'un nombre impair de personnes est pair.
- Z1N **Exercice 30** Soit G un graphe à m arêtes et n sommets. Montrer que si $m \ge n$, alors G admet un cycle.
- K8D **Exercice 31** Soit G un graphe dont le degré moyen est au moins d, c'est-à-dire tel que $m \ge \frac{dn}{2}$. Montrer que G contient un sous-graphe H, obtenu en retirant certains sommets de G et les arêtes attachées, dont tous les sommets soient de degré au moins $\frac{d}{2}$.
- VE4 **Exercice 32** A FORMULE D'EULER Un graphe connexe est dessiné dans le plan, sans que les arêtes ne se croisent. On note s le nombre de sommets, a le nombre d'arêtes, et f le nombre de faces (dont la face infinie extérieure). Montrer que s a + f = 2.
- SBR Exercice 33 \bigstar Dans une grille $n \times n$, on place 2n jetons. Montrer qu'il existe k > 1 et une suite de jetons c_1, \ldots, c_{2k} tels que l'on puisse successivement sauter de c_i à c_{i+1} (et finalement de c_{2k} à c_1) en se déplaçant alternativement sur une ligne ou sur une colonne de la grille.

Indication: Se ramener à l'existence d'un cycle dans un graphe. La difficulté est dans le choix du graphe.